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Abstract
This paper is an extended abstract of a recent work, in which we introduce COSINER, a novel approach
to enhancing Named Entity Recognition (NER) tasks through data augmentation. Unlike traditional
methods that risk introducing noise, COSINER leverages context similarity to substitute entity mentions
with more contextually appropriate ones, yielding superior performance in limited-data scenarios.
Experimental results demonstrate COSINER’s effectiveness over existing baselines, with computational
times comparable to basic augmentation methods and superior to pre-trained model-based approaches.
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1. Introduction

Named Entity Recognition (NER) is a crucial component of natural language processing (NLP),
which aims to understand and process natural language for various tasks like sentiment analysis,
text classification, and machine translation. NER’s objective is to identify and classify entity
mentions (e.g., person, organization, disease) in unstructured text. It serves as a foundational
step in several applications (e.g., machine translation or information discovery). NER identifies
and extracts relevant items from unstructured text, like diseases or genes in medical records,
serving as a crucial initial step for various applications like knowledge graphs and Q/A bots.

NER model training typically requires vast annotated data, but obtaining quality annotations,
especially in specialized domains, is time-consuming and costly. Few-shot learning, exploring
unique strategies for constrained datasets, addresses this challenge, particularly in fields lacking
readily available domain specialists.

Data augmentation, a method to enhance dataset size by generating additional samples, is
commonly used to address data scarcity. In Natural Language Processing (NLP), techniques
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like word replacement [1], random deletion [2], word position swap [3] and generative models
[4] are popular. However, token-level classification in NER becomes more and more complex
using traditional augmentation, requiring an increasing effort in analyzing possible approaches
in this area [5]. Recent efforts explore transfer learning [6] and Masked Language Models
(MLM) [7] to alleviate label misalignment and augment datasets effectively. Moreover, while
data augmentation holds promise, the current manipulation methods often generate noisy and
misclassified samples. The added data may contain syntactic or semantic errors, leading to
inaccuracies in classification.

To address this challenge, we present our method, COntext SImilarity-based data augmentation
for NER (COSINER) [8], which utilizes similarity metrics to generate augmented examples that
closely resemble real context. Our approach introduces a context-based mention replacement
technique, substituting mentions in input data with entities from an Entity Lexicon that are
contextually appropriate. In this paper, which is an extended abstract of our previous work
[9], our contribution consists of the development of COSINER and an extensive evaluation
across three prominent biomedical benchmark datasets that demonstrate COSINER’s superiority
over existing methods, highlighting its general applicability beyond the biomedical domain.
Notably, COSINER’s effectiveness is attributed to its ability to improve performance primarily
through top-ranked samples, reducing reliance on large augmented datasets and enhancing
computational efficiency.

2. Methodology

COSINER utilizes mention replacement to expand the initial training set, a technique previously
explored by Dai et al. [5]. While their method randomly substitutes entities within sentences
using a binomial distribution, we introduce a systematic approach centered on similarity, where
entity mentions are replaced with counterparts closely matching in syntax, semantics, and
context. Despite the quadratic time complexity of our methodology, equal to 𝑂(𝑚𝑛2) for
computing cosine similarity between 𝑛 embeddings (with a size of 𝑚), the time spent generating
new examples remains insignificant. Figure 1 provides an overview of our methodical flow,
elaborated further in subsequent sections.

Lexicon generation In the training set, each entity, referred to as a 𝑐𝑜𝑛𝑐𝑒𝑝𝑡, needs to be
collected for replacement purposes. A 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 can comprise one or a group of words, and we
also record the frequency of each word’s appearance in the training set within the Lexicon
𝐶𝑐𝑜𝑛𝑐𝑒𝑝𝑡. The size of the Lexicon varies depending on the number of mentions in the dataset.
It is significant to emphasize that although the size of the Lexicon influences the speed of
computing similarity values between entity pairs, this influence is not a constraint, particularly
as we conduct experiments in few-shot scenarios.

Embeddings extraction In order to calculate entities similarities, it’s imperative to establish
a comprehensive representation (𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡) for all Lexicon concepts, which serves as viable input
for our predictive model. We employ a pre-trained language model as a feature extractor [10, 11]
to process each phrase containing a given mention from the Lexicon, mapping each token to
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Figure 1: COSINERmethodological flow: (1) Original training set is utilized to create a Lexicon of all
entities. (2) Entities are embedded into a vector space based on sentences containing at least on mention,
(3) Similarity scores between pairs of embeddings are computed to establish connections between each
entity and the related ranked list similar entities, (4) An augmented training set is formulated, (5) The
model undergoes training employing both the original and augmented training datasets.

its word embedding 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (i.e. an array of numerical features representing the token in its
context). In cases where mentions consist of multiple tokens, 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is obtained by averaging
the word embeddings of all tokens.

Upon retrieving 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡, the numerical representation of the concept 𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡 is updated
using the formula:

𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡 = 𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡 + 𝑙𝑟 · (1− sim) · 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡,

where 𝑙𝑟 denotes a regularization term determined by the inverse of the frequency of a
mention across the entire dataset, and 𝑠𝑖𝑚 represents the cosine similarity between 𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡 and
𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡. Initially, 𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡 is set to the 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡 value of the first sentence where the mention
appears.

Similarity computation We calculate the cosine similarity between the embeddings 𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡

of every pair of entities in the Lexicon to derive a ranked list of similarity scores 𝑧𝑖𝑗 =

sim(𝑉 𝑖
𝑐𝑜𝑛𝑐𝑒𝑝𝑡, 𝑉

𝑗
𝑐𝑜𝑛𝑐𝑒𝑝𝑡) associated with each Lexicon entry. We define two ranking criteria:

1)Maximum (descending order): Prioritizing concepts with the highest relatedness at the top
of the list. This approach facilitates the generation of realistic augmented samples that uphold
contextual consistency within sentences.

2)Minimum (ascending order): By initially considering the least similar entities, we encompass
samples farthest from the knowledge boundary. This inclusion enables the recognition and
accurate classification of extreme cases.

Augmented set generation The augmented set is constructed from all sentences featuring
at least one mention. Each sentence is assigned a similarity value 𝑠𝑚, , which is computed as
the mean of entity similarity scores 𝑧𝑖𝑗for the additional entities present within the sentence.
We employ two strategies:

1) Local Augmentation: Each sentence results in the generation of 𝑘 new samples, ensuring
the contribution of every training instance to the augmented set.
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Figure 2: COSINER Augmentation strategies. Both local and global strategies start by generating
𝑘 augmented sentences per phrase with at least one mention, using Mention Replacement (MR) and
similarity lists from the training set. Then, each augmented example is assigned a sentence similarity
value 𝑠𝑚. In the local strategy, the new training set comprises all augmented examples. In the global
approach, a new list is generated, arranging examples based on their 𝑠𝑚, values, and the top ℎ sentences
are selected for the augmented training set.

2) Global Augmentation: Similar to the previous strategy, 𝑘 new samples are generated for
each sentence. Subsequently, we rank all newly generated sentences in a single list based on
their similarity value 𝑠𝑚 and select the first ℎ elements.

In Figure 2 we emphasize the distinctions between the two strategies.

NERmodel training We adhere to the IOB2 scheme for the NER token-classification task [12].
The original training dataset and the augmented samples are fed into a Transformer network
backbone [10, 11]. Model parameters undergo optimization via cross-entropy minimization.

3. Experimental Analysis

We conduct training and evaluation on three renowned benchmark datasets sourced from
biomedical articles: i) NCBI-Disease [13]: Comprising 793 PubMed abstracts, with 6,881 dis-
ease entities, ii) BC5CDR [14]: Comprising 1,500 PubMed articles, containing 15,935 chemical
mentions, and BC2GM [15]: Comprising 20,000 sentences extracted from PubMed abstracts,
involving 20,702 gene entities.

We delineate three distinct few-shot scenarios, each characterized by the percentage of
samples drawn from the available corpora employed in implementing our methods: specifically,
2%, 5%, and 10%. Subsequently, we present all experimental findings within these aforementioned
few-shot scenarios. Dataset statistics and few-shot scenarios details are summarized in Table 1.

3.1. Hyperparameter tuning

Table 2 presents results achieved using various parameter configurations for similarity compu-
tation (Maximum vs Minimum) and augmented set generation (Local vs Global), as discussed



Table 1
Statistics of the dataset used.

Dataset splits Few-shot size
Dataset Entity type N. Annotations Train Dev Test 2% 5% 10%

NCBI-disease Disease 6881 5425 924 941 108 271 542
BC5CDR Chemical 15411 4561 4582 4798 91 228 456
BC2GM Gene 20703 12575 2520 5039 251 628 1257

Table 2
Exploration of optimal strategies for COSINER.

Dataset size Similarity Strategy NCBI Disease BC5CDR BC2GM

2%

Maximum Global 0.688± 0.077 0.83± 0.023 0.658± 0.036
Minimum Global 0.683± 0.086 0.823± 0.032 0.652± 0.027
Maximum Local 0.689± 0.088 0.832 ±0.022 0.665 ±0.038
Minimum Local 0.692 ±0.081 0.824± 0.015 0.659± 0.049

5%

Maximum Global 0.765 ±0.035 0.858± 0.023 0.717± 0.007
Minimum Global 0.756± 0.028 0.853± 0.029 0.713± 0.009
Maximum Local 0.76± 0.031 0.863 ±0.042 0.726 ±0.022
Minimum Local 0.764± 0.041 0.86± 0.031 0.714± 0.007

10%

Maximum Global 0.807± 0.038 0.88± 0.018 0.76± 0.02
Minimum Global 0.807± 0.029 0.873± 0.016 0.761± 0.012
Maximum Local 0.816 ±0.066 0.882 ±0.007 0.767 ±0.023
Minimum Local 0.807± 0.038 0.876± 0.016 0.76± 0.009

in Section 2. As anticipated, employing Maximum similarity computation generally yields
superior performance, as augmented samples are plausible and closer to the test distribution.
Nevertheless, the notable performance achieved with the Minimum configuration suggests
that at times, considering "distant" entities may prove beneficial in expanding the NER model’s
scope. Regarding augmented set generation, the Local criterion typically outperforms, owing
to its augmentation of all sentences in the original dataset. In summary, it’s noteworthy that
Maximum local emerges as the most favorable overall strategy.

When creating an augmented dataset, the quantity of augmented samples is a crucial pa-
rameter to consider. Therefore, we conducted experiments using three distinct budgets for the
augmented set: small (100 samples), medium (300 samples), and large (500 samples).

Figure 3 illustrates the results obtained across the three benchmark datasets. Due to the
similarity-based approach, which prioritizes the most informative examples in the top-ranked
positions, there is minimal discrepancy observed when using higher budgets.

4. Result

We contrast our top-performing results with baselines drawn from current literature [5], as
follows:

• No Augmentation: Results obtained using the original training set assessed with a BERT
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Figure 3: Comparison of outcomes among the small, medium, and large budget allocations for local
augmentation strategy using the maximum similarity technique.

or BioBERT pre-trained model.
• Mention Replacement (MR): Random selection of a mention from the original training

set with the same entity type for each mention in the instance.
• Label-wise Token Replacement (LwTR): Randomly decide whether to replace each word

within a sentence with any other word in the dataset sharing the same label.
• Synonym Replacement (SR): Employ a binomial distribution to determine whether to

replace each word within a sentence with a synonym from WordNet [16].
• Masked Entity Language Modeling (MELM): Employ a pre-trained RoBERTa model

as MLM to predict masked tokens within the training set. Subsequently, utilize the
augmented dataset to train a BERT model.

• Cross-Domain Named Entity Recognition (style_NER): Utilize additional data to transfer
knowledge from a source domain to a target domain.

Table 3 compares the precision, recall, and F1 scores of the baselines with our method, which
achieved the best outcomes for each dataset and related scenarios. Results indicate that COSINER
outperforms most baselines across scenarios and datasets. While it consistently ensures the
highest recall scores, signifying the system’s ability to identify more entity mentions present in
the corpus, COSINER falls short of SR in terms of precision in some scenarios. This suggests
that the augmentation process may generate a higher number of false positives.

5. Conclusion

In this study, we have employed a context similarity-based approach to generate augmented
data, aiming to enhance the performance of NER tasks while mitigating the adverse effects of
noisy and mislabeled data commonly encountered with existing techniques.

Our experiments conducted in the medical domain, where data augmentation is particularly
crucial, underscore the efficacy of our method. We have demonstrated its superiority over
several state-of-the-art baselines, achieving comparable or improved execution times.

Looking ahead, our approach holds promise for integration with complementary techniques
beyond Mention Replacement. Future investigations will explore its applicability across diverse



Table 3
Comparative results between baselines and our best strategy.

Size Method NCBI-Disease BC5CDR BC2GM

F1 Precision Recall F1 Precision Recall F1 Precision Recall

2%

No augmentation 0.430 ±0.193 0.403 ±0.169 0.461 ±0.225 0.628 ±0.179 0.625 ±0.185 0.634 ±0.215 0.510 ±0.036 0.448 ±0.015 0.592 ±0.082

No augmentation (BioBERT) 0.651 ±0.122 0.619 ±0.100 0.688 ±0.162 0.792 ±0.067 0.799 ±0.058 0.786 ±0.110 0.644 ±0.031 0.600 ±0.057 0.695 ±0.022

MR 0.666 ±0.084 0.626 ±0.1 0.710 ±0.067 0.813 ±0.032 0.806 ±0.06 0.822 ±0.071 0.640 ±0.02 0.593 ±0.062 0.696 ±0.049

LwTR 0.677 ±0.101 0.637 ±0.125 0.723 ±0.08 0.828 ±0.019 0.808 ±0.052 0.850 ±0.075 0.642 ±0.037 0.591 ±0.059 0.704 ±0.019

SR 0.692 ±0.103 0.649 ±0.132 0.742 ±0.084 0.813 ±0.032 0.811 ±0.085 0.835 ±0.064 0.662 ±0.033 0.619 ±0.058 0.710 ±0.029

MELM 0.578 ±0.038 0.545 ±0.046 0.615 ±0.041 0.754 ±0.019 0.719 ±0.047 0.795 ±0.036 0.566 ±0.011 0.504 ±0.006 0.647 ±0.027

style_NER 0.581 ±0.061 0.537 ±0.076 0.636 ±0.067 0.752 ±0.018 0.713 ±0.041 0.796 ±0.016 0.581 ±0.003 0.540 ±0.018 0.631 ±0.025

COSINER (ours) 0.689 ±0.088 0.629 ±0.078 0.764 ±0.11 0.832 ±0.022 0.814 ±0.08 0.853 ±0.066 0.665 ±0.038 0.614 ±0.065 0.724 ±0.025

5%

No augmentation 0.621 ±0.055 0.572 ±0.088 0.68 ±0.054 0.757 ±0.039 0.73 ±0.062 0.788 ±0.121 0.612 ±0.022 0.563 ±0.03 0.671 ±0.077

No augmentation (BioBERT) 0.735 ±0.041 0.706 ±0.051 0.767 ±0.062 0.850 ±0.02 0.836 ±0.01 0.865 ±0.048 0.711 ±0.012 0.680 ±0.028 0.744 ±0.019

MR 0.743 ±0.048 0.712 ±0.045 0.776 ±0.059 0.849 ±0.021 0.834 ±0.03 0.865 ±0.026 0.713 ±0.006 0.675 ±0.02 0.755 ±0.024

LwTR 0.743 ±0.072 0.710 ±0.066 0.780 ±0.086 0.860 ±0.039 0.846 ±0.017 0.876 ±0.067 0.699 ±0.012 0.660 ±0.024 0.742 ±0.029

SR 0.758 ±0.044 0.719 ±0.049 0.800 ±0.049 0.858 ±0.03 0.841 ±0.033 0.875 ±0.067 0.719 ±0.011 0.684 ±0.023 0.758 ±0.019

MELM 0.678 ±0.034 0.647 ±0.037 0.713 ±0.035 0.800 ±0.020 0.769 ±0.043 0.835 ±0.030 0.629 ±0.010 0.587 ±0.010 0.677 ±0.021

style_NER 0.687 ±0.040 0.662 ±0.038 0.714 ±0.042 0.805 ±0.015 0.793 ±0.020 0.818 ±0.020 0.640 ±0.005 0.594 ±0.018 0.695 ±0.017

COSINER (ours) 0.76 ±0.031 0.721 ±0.029 0.805 ±0.057 0.863 ±0.042 0.839 ±0.04 0.892 ±0.058 0.726 ±0.022 0.692 ±0.013 0.767 ±0.03

10%

No augmentation 0.712 ±0.056 0.670 ±0.065 0.76 ±0.046 0.804 ±0.032 0.781 ±0.046 0.829 ±0.054 0.669 ±0.019 0.626 ±0.026 0.720 ±0.045

No augmentation (BioBERT) 0.791 ±0.028 0.760 ±0.024 0.825 ±0.036 0.875 ±0.013 0.858 ±0.02 0.892 ±0.028 0.759 ±0.017 0.734 ±0.019 0.786 ±0.016

MR 0.794 ±0.018 0.761 ±0.025 0.831 ±0.019 0.874 ±0.034 0.859 ±0.038 0.889 ±0.04 0.754 ±0.01 0.724 ±0.013 0.787 ±0.032

LwTR 0.789 ±0.023 0.756 ±0.034 0.825 ±0.036 0.882 ±0.017 0.870 ±0.021 0.893 ±0.022 0.741 ±0.012 0.712 ±0.023 0.772 ±0.025

SR 0.803 ±0.033 0.776 ±0.033 0.832 ±0.053 0.883 ±0.018 0.862 ±0.016 0.904 ±0.021 0.763 ±0.012 0.738 ±0.019 0.788 ±0.02

MELM 0.740 ±0.017 0.712 ±0.019 0.770 ±0.016 0.841 ±0.010 0.824 ±0.013 0.858 ±0.019 0.685 ±0.006 0.647 ±0.008 0.728 ±0.010

style_NER 0.745 ±0.014 0.738 ±0.018 0.752 ±0.014 0.838 ±0.012 0.829 ±0.025 0.847 ±0.021 0.694 ±0.004 0.660 ±0.009 0.732 ±0.010

COSINER (ours) 0.816 ±0.066 0.780 ±0.014 0.856 ±0.068 0.882 ±0.007 0.861 ±0.022 0.914 ±0.02 0.767 ±0.023 0.738 ±0.026 0.798 ±0.015

contexts and with various entity types, fostering a deeper understanding of its potential and
versatility.
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