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Abstract
Early diagnosis of Alzheimer’s disease (AD) is crucial for providing timely treatment and care to patients.
However, current diagnostic methods rely on clinical symptoms and biomarkers, which are often
unreliable and invasive. Brain networks model the brain’s structure and function in AD and other brain
diseases. To fully capture their complexity, we need multi-modal models that combine different types of
data, such as structural and functional connectivity, clinical and genetic information. This gives us a
holistic view of the disease’s many aspects. In this paper, we argue that brain networks and multi-modal
data fusion can improve early diagnosis of AD by capturing the complex and heterogeneous nature of the
disease. Using brain network modeling and multi-modal data fusion, we envisage a novel framework for
detecting AD and its prodromal stages. The framework can simultaneously capture network properties
from multi-modal as well as longitudinal datasets, which provide complementary information.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of
people worldwide. It is characterized by cognitive impairment, memory loss, and behavioral
changes. AD is the most common cause of dementia and the sixth leading cause of death among
adults. Early diagnosis of AD is crucial for providing timely treatment and care to the patients,
as well as for reducing the social and economic burden of the disease.

The development of AD typically occurs in three primary phases. In the initial stage, known
as pre-clinical AD, changes in the brain may initiate without observable symptoms, making
detection of the disease challenging. Subsequently, in the second phase, referred to as mild
cognitive impairment (MCI), individuals and their families may start noticing symptoms related
to cognitive abilities, although these may not significantly affect daily functioning. Notably, not
all individuals diagnosed with MCI progress to AD.

Research on Alzheimer’s primarily focuses on identifying biomarkers capable of diagnosing
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the disease and predicting its progression. Various measurements have been developed and
assessed for detecting AD, typically encompassing physical health examinations, neuropsycho-
logical assessments, and brain imaging techniques. Biomarkers are usually categorized into
physiological, cognitive, behavioral, and psychological domains. Among the non-cognitive tests,
neuroimaging techniques are commonly utilized, while the Mini Mental State Examination
(MMSE) [1, 2] stands out as one of the most widely recognized cognitive assessments.

However, current diagnostic methods rely on clinical symptoms and biomarkers, which are
often unreliable and invasive. Clinical symptoms are subjective and vary across individuals
and stages of the disease. Biomarkers, such as cerebrospinal fluid (CSF) and amyloid-beta (Aβ),
require invasive procedures and expensive equipment. Moreover, both clinical symptoms and
biomarkers are not sensitive enough to detect the early and prodromal stages of AD, such as
mild cognitive impairment (MCI) and subjective cognitive decline (SCD).

To capture the various symptoms of AD, including subtle changes that occur throughout the
progression of the disease, there’s widespread agreement that a reliable method for detecting
early-stage Alzheimer’s disease cannot rely solely on measurements from one source. Instead,
it should employ a multi-modal approach by combining different types of biomarkers. Each
type of data reveals unique aspects of the condition, and integrating them all provides a more
comprehensive understanding, ultimately improving diagnostic accuracy.
Over the past few years, the progress in Artificial Intelligence-based methods for analyzing

multi-modal data has fueled research seeking new approaches for early disease detection. In
Comito et al. [3], an overview of the most recent approaches leveraging machine learning
and deep learning techniques for the prediction of Alzheimer’s disease by exploiting the huge
amount of multi-modal data now made available from the public repositories mentioned above
to researchers has been presented. However, current research does not consider an important
modality that recently has attracted the interest of many researchers: the brain connectome
introduced by Sporns et al. [4] in 2005. In particular, in the last ten years, the investigation of
AD progression and early detection has shown promise through the concurrent utilization of
advanced neuroimaging methods and complex network theory. By creating a brain network
from imaging data and representing it using network graphs allows to capture the complex and
dynamic interactions among brain regions, and reflect the changes in the brain structure and
function due to AD. Several studies have shown that brain network analysis can provide useful
insights into the pathophysiology and progression of AD, and can discriminate between AD and
normal aging. Analyzing the complex network of the human brain provides valuable insights
into its structural organization. This allows for the identification of abnormal interaction
patterns or irregularities in the modular structure of brains affected by AD.

The objective of this paper is to explore new avenues and methods to integrate brain networks
within multi-modal learning architecture to improve early diagnosis of Alzheimer’s disease.
To this purpose, the paper proposes a novel framework for detecting AD and its prodromal
stages using brain network modeling and multi-modal data fusion. Unlike existing methods,
our framework can simultaneously capture network properties from multi-modal as well as
longitudinal datasets, which provide complementary information. We use network models to
represent the structural and functional connectivity of the brain regions, and integrate multiple
types of data, such as images, text, audio, etc., to capture the complex and heterogeneous nature
of AD.



Figure 1: Data modalities used by the AI methods reviewed in the paper.

The paper is organized as follows. In Section 2, a summary of the current state-of-the-art
multi-modal approaches for AD prediction overviewed in [3] is reported. Section 3 discusses
brain networks, highlighting the most relevant trends of the network-based models. Section
4 presents the proposed framework integrating brain networks within multi-modal learning
architectures. Finally, Section 5 concludes the paper.

2. Multi-modal Approaches for AD Prediction

This section summarizes the main data modalities and AI methods utilized in Alzheimer’s
disease research reviewed in [3].
As far as data modalities are concerned (see Figure 1), neuroimaging (i.e. different tipology

of MRI and PET scans) stands out as the most prevalent data modality due to its non-invasive
nature, the availability of large datasets, the advancement of robust AI tools capable of extracting
significant features and classifying images, and the possibility of analyzing both structural and
functional brain anomalies and changes in AD patients.

Following neuroimaging, biological and genetic markers (APOE-e4, SNPs, CSF) are predomi-
nantly used to identify individuals likely to develop AD. Actually, certain genes and CSF markers
have been linked to an increased risk of the disease. Neuropsychological and cognitive assess-
ment tests are the third most common, primarily serving as screening tools to pinpoint those
requiring further evaluation. Lastly, demographic and clinical data, including blood markers,
are less frequently employed in the classification and progression tracking of AD.
The complexity and diversity of the data involved in AD research are, in turn, reflected in

the use of various AI techniques to classify the stages of the disease and predict its progression.
Traditional ML classifiers like SVM, DT, GB, RF, and LOR are widely used (see Figure 2),

particularly when clinical, demographic, and cognitive data are adopted. On the other hand,
DL methods, including NN, CNN, and RNN, show promise in medical image analysis, which is
crucial for AD diagnosis and monitoring. However, there is a remarkable number of AI methods
(referenced in Figure 2 as “OTHERS”) that are used only in one or two approaches. This



highlights that the application of AI in AD prediction and progression is indeed a multifaceted
field.
The mixed outcomes of the research in this field suggest that there is no one-size-fits-all

solution, and the choice of technique may depend on the specific dataset and task at hand.
Moreover, the need for careful parameter tuning, data selection, and experimental settings
cannot be overstated, especially when dealing with limited data availability, which is a common
challenge in AD research. The exploration of ensemble neural networks and the comparison of
various ML models underscore the ongoing efforts to refine predictive models for AD.

Overall, the continuous evolution of AI methods in AD prediction and progression demon-
strates the dynamic nature of the field and the potential for AI to contribute to our understanding
and management of this complex disease.

Figure 2: AI Methods used for Alzheimer’s Disease Prediction and Progression.

3. Brain networks

In the last decade, the study of the progression of Alzheimer’s disease and its early detection
has provided promising results from the joint use of advanced neuroimaging techniques and
complex network theory [5]. The construction of a brain network from an imaging model
through the formalism of network graphs has significantly improved the understanding of how
the brain of an AD patient behaves. The complex networks-based analysis of the human brain
provides better insights into the network structure, thus uncovering abnormal patterns of
interactions or randomness in the modular structure of an AD-infected brain.

Graphs are a mathematical model widely used for studying complex systems. In the literature
on brain networks and neurodegenerative diseases in general, there are different ways to
formalize and model the brain through a graph. More formally, the entities of a brain and their
relationships can be represented with a brain network 𝐵𝑁 modeled as a graph 𝐺 = (𝑉 , 𝐸,𝑊 )
where 𝑉 is a set of 𝑛 objects, called nodes or vertices, 𝐸 ⊆ 𝑉 × 𝑉 is a set of links, called edges,
that connect two elements of 𝑉, and 𝑊 ∶ 𝑉 × 𝑉 → 𝑅 is a function which assigns a weight to a
couple (𝑖, 𝑗) of nodes 𝑖 and 𝑗, if there exists an edge connecting 𝑖 and 𝑗, and 0 if an edge between 𝑖



and 𝑗 does not exist. In almost all the AD-related studies, the nodes of the graph are usually
brain regions, while the edges may capture different relationships between regions [6, 7]. We
therefore classify brain networks and study their connectivity accordingly, as follows.

• Anatomical/structural brain networks: constructed from structural magnetic reso-
nance imaging (MRI), the edges represent physical connections between regions (e.g., the
estimated white matter connection strength in terms of number of fibers between any
pair of brain regions [7], interregional similarity [8] [9], etc.).

• Functional brain networks: the edges capture the functional interaction (magnetic,
electrical, or hemodynamic/metabolic) between brain regions that are not necessarily
adjacent or physically connected. These networks are usually constructed from imaging
models like functional magnetic resonance imaging (fMRI), electroencephalography
(EEG), and magnetoencephalography (MEG). In recent studies, resting-state functional
magnetic resonance imaging (rs-fMRI) has also been used in AD progression studies. This
imaging technique evaluates the BOLD (Blood oxygenation level-dependent) signal in
various regions of the brain. Its fluctuations, together with other functional connectivity
alterations, are used as AD biomarkers.

• Cortical thickness networks: these are hybrid networks based on structural data with
functional-like edges representing correlations between regions.

• Directed progression networks (DPNets): closely related to cortical thickness networks,
they attempt to capture the temporal progression of the disease, more than the correlations
between regions, similar to the epidemic network models where an edge represents the
spreading of the disease. In this network formalism, the edges are directed and capture
the degree to which one brain region thinning precedes the second region thinning.

To characterize network topology, thresholding sparsification techniques are usually applied to
structural or functional connectivity matrices to remove edges with noisy weights [10].
Even if these types of networks are clearly related, the comparison between them and their

joint analysis with the goal of having a systemic and multi-layer view of the disease progression
is not straightforward [7].
An important aspect that the study of brain networks has highlighted in recent years is the

detection of building blocks, i.e. the presence of overabundant small subgraphs sharing patterns
of interconnections, called network motifs, occurring with a frequency higher than that in a
random network [11]. Network motifs have been recognized as fundamental building blocks
of networks [11] giving insights into the functional mechanisms of the analyzed system, and
revealing different organization models of the same network.

A𝑚𝑜𝑡𝑖𝑓 of a graph 𝐺 is defined as an unordered subset𝑀 = {𝑣1, … , 𝑣𝑟} of nodes of 𝐺 presenting
a particular pattern of interconnections. Fig. 3 shows five types of motifs among three and four
nodes (Fig. 3(a)-Fig. 3(e)). Their labeling follows the same convention adopted in [12]. The
bi-fan motif, for example, is over-expressed in neuronal networks.

Motifs have been largely analyzed in brain networks, especially in structural and functional
networks. In [13], Meier et al. exploit motifs for clustering the functional brain network built
on MEG data. This type of network, called effective connectivity network, is composed by ROIs
linked by their effective connectivity, a measure describing the causal effect of one brain region
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Networks are a fundamental tool for understanding and modeling complex systems in physics,
biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich,
lower-order connectivity patterns that can be captured at the level of individual nodes and
edges. However, higher-order organization of complex networks—at the level of small network
subgraphs—remains largely unknown. Here, we develop a generalized framework for clustering
networks on the basis of higher-order connectivity patterns.This framework provides
mathematical guarantees on the optimality of obtained clusters and scales to networks with
billions of edges.The framework reveals higher-order organization in a number of networks,
including information propagation units in neuronal networks and hub structure in transportation
networks. Results show that networks exhibit rich higher-order organizational structures
that are exposed by clustering based on higher-order connectivity patterns.

N
etworks are a standard representation of
data throughout the sciences, and higher-
order connectivity patterns are essential to
understanding the fundamental structures
that control and mediate the behavior of

many complex systems (1–7). Themost common
higher-order structures are small network sub-
graphs,whichwe refer to asnetworkmotifs (Fig. 1A).
Network motifs are considered building blocks
for complex networks (1, 8). For example, feed-
forward loops (Fig. 1A,M5) have proven funda-
mental to understanding transcriptional regulation
networks (9); triangularmotifs (Fig. 1A,M1–M7) are
crucial for social networks (4); open bidirectional
wedges (Fig. 1A, M13) are key to structural hubs
in the brain (10); and two-hop paths (Fig. 1A,
M8–M13) are essential to understanding air traf-
fic patterns (5). Although network motifs have
been recognized as fundamental units of net-
works, the higher-order organization of networks
at the level of network motifs largely remains an
open question.
Here, we use higher-order network structures

to gain new insights into the organization of com-
plex systems. We develop a framework that iden-
tifies clusters of networkmotifs. For each network
motif (Fig. 1A), a different higher-order clustering
may be revealed (Fig. 1B), which means that dif-
ferent organizational patterns are exposed, de-
pending on the chosen motif.
Conceptually, given a network motif M, our

framework searches for a cluster of nodes Swith
two goals. First, the nodes in S should participate
in many instances ofM. Second, the set S should
avoid cutting instances ofM, which occurs when
only a subset of the nodes fromamotif are in the
set S (Fig. 1B). More precisely, given a motif M,
the higher-order clustering framework aims to
find a cluster (defined by a set of nodes S) that

minimizes the following ratio:

fM ðSÞ ¼ cutM ðS; SÞ=min½volM ðSÞ; volM ðSÞ%
ð1Þ

where S denotes the remainder of the nodes (the
complement of S), cutM(S,S) is the number of
instances of motifM with at least one node in S
and one in S, and volM (S) is the number of nodes

in instances ofM that reside in S. Equation 1 is a
generalization of the conductance metric in spec-
tral graph theory, one of the most useful graph
partitioning scores (11). We refer to fM(S) as the
motif conductance of S with respect toM.
Finding the exact set of nodes S thatminimizes

themotif conductance is computationally infeasible
(12). To approximatelyminimize Eq. 1 and, hence,
to identify higher-order clusters, we developed an
optimization framework that provably finds near-
optimal clusters [supplementarymaterials (13)].
We extend the spectral graph clustering method-
ology, which is based on the eigenvalues and eigen-
vectors of matrices associated with the graph (11),
to account for higher-order structures innetworks.
The resulting method maintains the properties of
traditional spectral graphclustering: computational
efficiency, ease of implementation, andmathemati-
cal guarantees on the near-optimality of obtained
clusters. Specifically, the clusters identified by our
higher-order clustering framework satisfy themotif
Cheeger inequality (14), which means that our
optimization framework finds clusters that are at
most a quadratic factor away from optimal.
The algorithm (illustrated in Fig. 1C) efficiently

identifies a cluster of nodes S as follows:
• Step 1: Given a network and a motif M of

interest, form the motif adjacency matrix WM

whose entries (i, j) are the co-occurrence counts
of nodes i and j in the motifM: (WM)ij = number
of instances of M that contain nodes i and j.

SCIENCE sciencemag.org 8 JULY 2016 • VOL 353 ISSUE 6295 163

1Institute for Computational and Mathematical Engineering,
Stanford University, Stanford, CA 94305, USA. 2Department
of Computer Science, Purdue University, West Lafayette, IN
47906, USA. 3Computer Science Department, Stanford
University, Stanford, CA 94305, USA.
*Corresponding author. Email: jure@cs.stanford.edu

Fig. 1. Higher-order network structures and the higher-order network clustering framework.
(A) Higher-order structures are captured by network motifs. For example, all 13 connected three-node directed
motifs are shownhere. (B)ClusteringofanetworkbasedonmotifM7. ForagivenmotifM, our frameworkaims to
find a set of nodes S that minimizes motif conductance, fM(S), which we define as the ratio of the number of
motifs cut (filled triangles cut) to theminimumnumber of nodes in instances of themotif in eitherS orS (13). In
this case, there is onemotif cut. (C) Thehigher-order networkclustering framework.Given agraph and amotif of
interest (in this case,M7), the framework forms amotif adjacencymatrix (WM) by counting the number of times
two nodes co-occur in an instance of the motif. An eigenvector of a Laplacian transformation of the motif
adjacencymatrix is then computed.The ordering s of the nodes provided by the components of the eigenvector
(15) produces nested sets Sr = {s1, …, sr} of increasing size r.We prove that the set Sr with the smallest motif-
based conductance, fM(Sr), is a near-optimal higher-order cluster (13).
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Fig. 1. Higher-order network structures and the higher-order network clustering framework.
(A) Higher-order structures are captured by network motifs. For example, all 13 connected three-node directed
motifs are shownhere. (B)ClusteringofanetworkbasedonmotifM7. ForagivenmotifM, our frameworkaims to
find a set of nodes S that minimizes motif conductance, fM(S), which we define as the ratio of the number of
motifs cut (filled triangles cut) to theminimumnumber of nodes in instances of themotif in eitherS orS (13). In
this case, there is onemotif cut. (C) Thehigher-order networkclustering framework.Given agraph and amotif of
interest (in this case,M7), the framework forms amotif adjacencymatrix (WM) by counting the number of times
two nodes co-occur in an instance of the motif. An eigenvector of a Laplacian transformation of the motif
adjacencymatrix is then computed.The ordering s of the nodes provided by the components of the eigenvector
(15) produces nested sets Sr = {s1, …, sr} of increasing size r.We prove that the set Sr with the smallest motif-
based conductance, fM(Sr), is a near-optimal higher-order cluster (13).
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Fig. 1. Higher-order network structures and the higher-order network clustering framework.
(A) Higher-order structures are captured by network motifs. For example, all 13 connected three-node directed
motifs are shownhere. (B)ClusteringofanetworkbasedonmotifM7. ForagivenmotifM, our frameworkaims to
find a set of nodes S that minimizes motif conductance, fM(S), which we define as the ratio of the number of
motifs cut (filled triangles cut) to theminimumnumber of nodes in instances of themotif in eitherS orS (13). In
this case, there is onemotif cut. (C) Thehigher-order networkclustering framework.Given agraph and amotif of
interest (in this case,M7), the framework forms amotif adjacencymatrix (WM) by counting the number of times
two nodes co-occur in an instance of the motif. An eigenvector of a Laplacian transformation of the motif
adjacencymatrix is then computed.The ordering s of the nodes provided by the components of the eigenvector
(15) produces nested sets Sr = {s1, …, sr} of increasing size r.We prove that the set Sr with the smallest motif-
based conductance, fM(Sr), is a near-optimal higher-order cluster (13).
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NETWORK SCIENCE

Higher-order organization of
complex networks
Austin R. Benson,1 David F. Gleich,2 Jure Leskovec3*

Networks are a fundamental tool for understanding and modeling complex systems in physics,
biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich,
lower-order connectivity patterns that can be captured at the level of individual nodes and
edges. However, higher-order organization of complex networks—at the level of small network
subgraphs—remains largely unknown. Here, we develop a generalized framework for clustering
networks on the basis of higher-order connectivity patterns.This framework provides
mathematical guarantees on the optimality of obtained clusters and scales to networks with
billions of edges.The framework reveals higher-order organization in a number of networks,
including information propagation units in neuronal networks and hub structure in transportation
networks. Results show that networks exhibit rich higher-order organizational structures
that are exposed by clustering based on higher-order connectivity patterns.

N
etworks are a standard representation of
data throughout the sciences, and higher-
order connectivity patterns are essential to
understanding the fundamental structures
that control and mediate the behavior of

many complex systems (1–7). Themost common
higher-order structures are small network sub-
graphs,whichwe refer to asnetworkmotifs (Fig. 1A).
Network motifs are considered building blocks
for complex networks (1, 8). For example, feed-
forward loops (Fig. 1A,M5) have proven funda-
mental to understanding transcriptional regulation
networks (9); triangularmotifs (Fig. 1A,M1–M7) are
crucial for social networks (4); open bidirectional
wedges (Fig. 1A, M13) are key to structural hubs
in the brain (10); and two-hop paths (Fig. 1A,
M8–M13) are essential to understanding air traf-
fic patterns (5). Although network motifs have
been recognized as fundamental units of net-
works, the higher-order organization of networks
at the level of network motifs largely remains an
open question.
Here, we use higher-order network structures

to gain new insights into the organization of com-
plex systems. We develop a framework that iden-
tifies clusters of networkmotifs. For each network
motif (Fig. 1A), a different higher-order clustering
may be revealed (Fig. 1B), which means that dif-
ferent organizational patterns are exposed, de-
pending on the chosen motif.
Conceptually, given a network motif M, our

framework searches for a cluster of nodes Swith
two goals. First, the nodes in S should participate
in many instances ofM. Second, the set S should
avoid cutting instances ofM, which occurs when
only a subset of the nodes fromamotif are in the
set S (Fig. 1B). More precisely, given a motif M,
the higher-order clustering framework aims to
find a cluster (defined by a set of nodes S) that

minimizes the following ratio:

fM ðSÞ ¼ cutM ðS; SÞ=min½volM ðSÞ; volM ðSÞ%
ð1Þ

where S denotes the remainder of the nodes (the
complement of S), cutM(S,S) is the number of
instances of motifM with at least one node in S
and one in S, and volM (S) is the number of nodes

in instances ofM that reside in S. Equation 1 is a
generalization of the conductance metric in spec-
tral graph theory, one of the most useful graph
partitioning scores (11). We refer to fM(S) as the
motif conductance of S with respect toM.
Finding the exact set of nodes S thatminimizes

themotif conductance is computationally infeasible
(12). To approximatelyminimize Eq. 1 and, hence,
to identify higher-order clusters, we developed an
optimization framework that provably finds near-
optimal clusters [supplementarymaterials (13)].
We extend the spectral graph clustering method-
ology, which is based on the eigenvalues and eigen-
vectors of matrices associated with the graph (11),
to account for higher-order structures innetworks.
The resulting method maintains the properties of
traditional spectral graphclustering: computational
efficiency, ease of implementation, andmathemati-
cal guarantees on the near-optimality of obtained
clusters. Specifically, the clusters identified by our
higher-order clustering framework satisfy themotif
Cheeger inequality (14), which means that our
optimization framework finds clusters that are at
most a quadratic factor away from optimal.
The algorithm (illustrated in Fig. 1C) efficiently

identifies a cluster of nodes S as follows:
• Step 1: Given a network and a motif M of

interest, form the motif adjacency matrix WM

whose entries (i, j) are the co-occurrence counts
of nodes i and j in the motifM: (WM)ij = number
of instances of M that contain nodes i and j.
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Fig. 1. Higher-order network structures and the higher-order network clustering framework.
(A) Higher-order structures are captured by network motifs. For example, all 13 connected three-node directed
motifs are shownhere. (B)ClusteringofanetworkbasedonmotifM7. ForagivenmotifM, our frameworkaims to
find a set of nodes S that minimizes motif conductance, fM(S), which we define as the ratio of the number of
motifs cut (filled triangles cut) to theminimumnumber of nodes in instances of themotif in eitherS orS (13). In
this case, there is onemotif cut. (C) Thehigher-order networkclustering framework.Given agraph and amotif of
interest (in this case,M7), the framework forms amotif adjacencymatrix (WM) by counting the number of times
two nodes co-occur in an instance of the motif. An eigenvector of a Laplacian transformation of the motif
adjacencymatrix is then computed.The ordering s of the nodes provided by the components of the eigenvector
(15) produces nested sets Sr = {s1, …, sr} of increasing size r.We prove that the set Sr with the smallest motif-
based conductance, fM(Sr), is a near-optimal higher-order cluster (13).
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• Step 2: Compute the spectral ordering s of
the nodes from the normalized motif Laplacian
matrix constructed via WM (15).
• Step 3: Find the prefix set of s with the

smallest motif conductance (the argument of the
minimum), formally, S : = arg minr fM(Sr), where
Sr = {s1,…, sr}.
For triangular motifs, the algorithm scales to

networkswith billions of edges and, typically, only
takes several hours to process graphs of such size.
On smaller networkswith hundreds of thousands
of edges, the algorithm can process motifs up to
size 9 (13). Although theworst-case computational
complexity of the algorithm for triangular mo-
tifs is Q(m1.5), where m is the number of edges

in the network, in practice, the algorithm ismuch
faster. By analyzing 16 real-world networks where
the number of edges m ranges from 159,000 to
2 billion, we found the computational com-
plexity to scale asQ(m1.2).Moreover, the algorithm
can easily be parallelized, and sampling tech-
niques can be used to further improve perform-
ance (16).
The framework can be applied to directed, un-

directed, andweighted networks, aswell asmotifs
(13). Moreover, it can also be applied to networks
withpositive andnegative signson the edges,which
are common in social networks (friend versus foe
or trust versus distrust edges) and metabolic net-
works (edges signifying activation versus inhibi-

tion) (13). The framework can be used to identify
higher-order structure innetworkswhere domain
knowledge suggests the motif of interest. In
the supplementary materials, we also show that
when a domain-specific higher-order pattern
is not known in advance, the framework can
also serve to identify which motifs are important
for the modular organization of a given network
(13). Such a general framework allows complex
higher-order organizational structures in a num-
ber of different networks by using individual
motifs and sets of motifs. The framework and
mathematical theory immediately extend to other
spectral methods, such as localized algorithms
that find clusters around a seed node (17) and

164 8 JULY 2016 • VOL 353 ISSUE 6295 sciencemag.org SCIENCE

Fig. 2. Higher-order cluster in the C. elegans neuronal network. [See (29).]
(A) The four-node bi-fan motif, which is overexpressed in neuronal networks
(1). Intuitively, this motif describes a cooperative propagation of information
from the nodes on the left to the nodes on the right. (B) The best higher-order
cluster in the C. elegans frontal neuronal network based on the motif in (A).
The cluster contains three ring motor neurons (RMEL, -V, and -R; cyan) with
many outgoing connections, which serve as the source of information; six
inner labial sensory neurons (IL2DL, -VR, -R, -DR, -VL, and -L; orange) with
many incomingconnections, servingas the destination of information; and four
URA motor neurons (purple) acting as intermediaries. These RME neurons

have been proposed as pioneers for the nerve ring (21), whereas the IL2
neurons are known regulators of nictation (22), and the higher-order cluster
exposes their organization.The cluster also reveals that RIH serves as a critical
intermediary of information processing. This neuron has incoming links from
three RME neurons, outgoing connections to five of the six IL2 neurons, and
the largest total number of connections of any neuron in the cluster. (C) Il-
lustration of the higher-order cluster in the context of the entire network. Node
locations are the true two-dimensional spatial embedding of the neurons.
Most information flows from left to right, andwe see that RMEV, -R, and -L and
RIH serve as sources of information to the neurons on the right.
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Figure 3: (a) 𝑀4, (b) 𝑀5 (feed-forward loop), (c) 𝑀6, (d) 𝑀8, (e) 𝑀𝑏𝑖𝑓 𝑎𝑛 motifs.

on another region. To calculate this pairwise value between brain regions, the measure of
Phase Transfer Entropy (PTE) is applied. Here, some 3 and 4 nodes motifs are over-expressed,
moreover, motif-based clustering reveals a strong symmetry between the two hemispheres,
supporting the idea of a higher-order organization of the effective connectivity brain network.
Battiston et al. [7] analyze the presence of motifs spanning over a two-layer brain network

of healthy subjects composed of a structural and a functional layer. The multiplex two-layer
network is built by forming a first structural network layer with DW-RMI data (Diffusion
Magnetic RMI) and a second functional layer with rs-fMRI data. The motifs analyzed are
multiplex, which is statistically overabundant small subgraphs spanning over the two layers
and jointly considered. Results show that motifs in which links between brain regions at the
structural layer also have a functional activity are frequent, but there are also frequent multiplex
motifs having distant regions with strong functional dynamics. Finally, the analysis shows the
existence of a reinforcement mechanism between the structural and the functional layers for
which the probability of having a link is related to the intensity of the connection in the other
layer.

Recent studies have highlighted that network motif analysis can provide new markers for the
diagnosis and progression of Alzheimer’s disease. Friedman et al. [14] were able to distinguish
AD from HC patients with directed motif analysis of their DPNets. In addition, the entropy of
the motif distribution provides a new imaging marker for MCI.
In the next section, a review of the most recent proposals studying brain networks for the

diagnosis of Alzheimer’s disease is reported.

3.1. Network-based approaches

As part of the Network Medicine approaches, the network-based methods are able to reveal the
network disruptions or the structural changes initiated by the disease through the application of
methodologies proper of Network Science and Graph Theory, offering practical techniques able
to tackle the limitations of the consolidated biomarkers [5]. These methods are increasingly
attracting interest due to their ability to simplify the understanding of the modeling of the
disease at multiple biological levels [15]. In the following, we review the most relevant works
in this area by reporting in Table 1 the type of brain network modeling.

• Dragomir and Vrahatis [16] review the current state-of-the-art in network-based biomark-
ers for preclinical AD diagnosis by subdividing the current trends into two research
lines: AD biomarkers focusing on the modular substructures at a (1) molecular level (i.e.
blood omics-biomarkers in molecular networks) and at a (2) brain level (i.e. volumetric



approaches and connectivity from MRI data on connectivity networks). In this context,
the benefits of monitoring the early stages of the disease by jointly considering genotype
and brain phenotype information as noninvasive biomarkers are discussed. Particular
emphasis is placed on methods that analyze the network substructure through methods
of complex network analysis since disruptions usually occur locally, in different brain
regions and molecular pathways, and at different rates. Finally, a framework integrat-
ing knowledge from the two information levels, molecular omics-based data collected
from blood samples and brain connectivity obtained from neuroimaging techniques, is
proposed, showing that this multi-level solution can further improve diagnosis.

• In [8], Tijms et al. analyze the structural brain network of gray matter extracted from
MRI images, and the clinical progression in nondemented subjects who have abnormal
amyloid markers in the cerebrospinal fluid (CSF), that is a marker of predementia AD.
The study investigates if network structural measures like size, connectivity density,
degree, clustering coefficient, path length, betweenness centrality, and the small-world
property are somehow associated with the rate of progression to MCI or dementia, using
Cox proportional hazard models to assess associations between the structural measures
and time to clinical progression. Results indicate that when these measures have low
values there is an increased risk of fast progression to MCI. In particular, lower clustering
values, indicative of a more randomly organized network, in specific anatomical areas are
associated with clinical outcomes and fast clinical progression.

• In recent work, [9] Ding et al. investigate the relationship between topological features
of gray matter morphological networks and the clinical cognitive performance of healthy
control subjects (HCs) and patients with SCD or MCI. Analyzing local graph measures, the
networks of SCD and MCI show a significant decrease of degree centrality in the caudate
neucleus and of nodal efficiency in the caudate neucleus, right insula, lenticular nucleus
and putamen. In terms of global topological measures, SCD and MCI patients show
lower values of path length, normalized path length, and global efficiency in their brain
networks. The study concludes that the topological features of the structural gray matter
network can be considered biomarkers that can improve AD prognosis and interventions
in its early stage.

• Friedman et al. [6] define and analyze the DPNets in AD, particularly directed brain
networks where an edge between two regions represents nor the physical connectivity
nor a functional connectivity but the temporal spreading of the pathology. The DPNets
are constructed by evaluating the change in cortical thickness measurements: when a
node A is thinning over time, it is considered infected with a certain probability and
may spread its infection to other nodes. A directed edge connects node A to a node B
if in a late period B shows a higher thinning rate (i.e. B has been ”infected” by A), with
a weight representing an infectious similarity (ISIM). By using several local and global
measures (degree, indegree, outdegree, size of the giant component, path length, global
efficiency, clustering coefficient, modularity and small world properties), the results show
that DPNets are able to classify AD patients looking at clustering (low) and small-world
property (low) values.

• Lama and Kwon [17] design an AD diagnosis approach able to classify subjects into AD,
MCI, or HC, modeling the brains as functional graphs and exploiting graph theory-based



Table 1
Type of brain networks graphs in the reviewed works of AD brain network analysis (GM= gray matter).
Study Brain network type Data # of nodes Node type Edge type
[8] structural MRI 62 SCD, 160 MCI GM 3x3x3 voxels interregional similarity
[9] structural MRI 39 SCD, 39 MCI. 26 HC GM 2x2x2 anatomical regions interregional similarity
[6] DPNet MRI 39 AD, 97 NC GM ROI with 0.94 x 0.94 x 1.2 voxels infectious similarity
[17] functional rs-fMRI 31 AD, 31 MCI, 31 HC GM ROI with 3.3 thickness voxels ROI correlation
[14] DPNet MRI 39 AD, 65 MCI, 54 CONV, 97 HC GM ROI with 0.94 x 0.94 x 1.2 voxels infectious similarity

features. The functional brain network is built by setting on each edge the Pearson’s
correlation functional connectivity between ROIs. Then, graph embedding (node2vec)
is used to transform graphs into a vector and applying machine learning techniques.
To classify the subjects into classes, different classification techniques including linear
support vector machines (LVSM) and regularized extreme machine learning (RELM) are
explored. The highest accuracy is obtained by combining LASSO with LSVM.

4. Fusing Brain Networks and Multi-modal data: Proposed
Learning Model

Brain networks are complex and intricate systems that reflect the brain’s structure and function
in various brain diseases, such as AD. Multi-modal data is essential to capture their complexity.
Multi-modal data integrates different types of data, such as structural and functional, con-
nectivity, clinical, and genetic information, to form a holistic understanding of the disease’s
multifaceted nature. Previous research has tried to fuse various modalities.

However, studies investigating the combination and the relationship of the brain connectome
with biomarkers and genetics are very few. Only recently, Yu et al. [10] pointed out the link
between the changes in structural and functional network organization in Alzheimer’s disease
brain and the accumulation of amyloid-𝛽 and tau in particular parts of the brain. Moreover,
Badhwar et al. [18] proposed a roadmap to fusing multiomics measurement for the diagnosis of
Alzheimer’s disease.

To bridge this gap we propose a novel multi-modal architecture that integrates brain network
with biomarkers and genetics data. Integrating brain networks and multi-modal data within a
learning framework for Alzheimer’s prediction is a promising approach that leverages diverse
sources of information to improve the accuracy and reliability of predictive models. Brain
networks provide a comprehensive representation of the brain’s structural and functional
connectivity patterns, offering valuable insights into the underlying neurobiology of Alzheimer’s
disease. Multi-modal data, on the other hand, encompasses various types of information such
as neuroimaging scans (e.g., MRI, PET), clinical assessments, genetic markers, and cognitive
scores, each providing unique perspectives on the disease.
Figure 4 shows the proposed learning framework. The model is crafted for a multi-modal

multitask objective, aiming to grasp Alzheimer’s disease progression and cognitive scores based
on a variety of data. As illustrated in Figure 4, the model initially processes data from five
modalities: neuroimaging, biomarkers, genomics, clinical, and demographics. Specifically,



Figure 4: Multi-modal Learning Framework

multimodal data including MRI scans, demographics, medical history, functional assessments,
and neuropsychological test results, are used to develop learning models on various classification
tasks. Local and temporal feature learning in the model is facilitated by exploiting machine and
deep learning cutting-edge methods. The features from various modalities (cognitive scores,
neuropsychological battery, MRI, PET, and assessment modalities) undergo preprocessing to
enhance data quality. AI techniques are utilized for feature reduction, extracting principal
components from high-dimensional MRI and PET data. For example, neuroimaging features
from MRI and PET modalities can be extracted using FreeSurfer. Subsequently, deep features
are independently learned from each modality using both ML and DL approaches like stacked



CNN-BiLSTM models. Abstract deep features obtained from the previous step are then fused to
extract common features from all modalities using a series of dense layers within a deep neural
network. As the final stage of the learning framework, a classification is produced.
By combining brain networks with multi-modal data in a learning framework, we can

capitalize on the complementary nature of these sources to enhance prediction accuracy and
understand the complex progression of AD. Here are some key points to consider:

• Feature Fusion. Integrating information from brain networks and multi-modal data
involves fusing features extracted from different sources into a unified representation. This
can be achieved through techniques such as feature concatenation, attention mechanisms,
or graph-based fusion methods.

• Learning Architecture. The learning framework should incorporate neural network archi-
tectures capable of processing multi-modal inputs and capturing complex relationships
within the data. This may involve the use of deep learning models such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs), or graph neural networks
(GNNs) tailored to handle multi-modal data.

• Regularization and Adaptation. Given the high-dimensional and heterogeneous nature of
multi-modal data, regularization techniques such as dropout, and batch normalization,
can help prevent overfitting and improve generalization performance. Additionally, model
adaptation strategies may be employed to adapt the learning process to different data
modalities and patient cohorts.

• Evaluation and Validation. Robust evaluation metrics and validation procedures are
essential for assessing the performance of the learning framework. Cross-validation,
hold-out validation, and external validation on independent datasets can help validate
the generalizability of the predictive models.

• Clinical Interpretability. Interpretable models are crucial for translating predictive insights
into actionable clinical decisions. Techniques such as attention mechanisms, feature
importance analysis, and visualization methods can provide insights into the contribution
of different modalities to the prediction task and aid in clinical interpretation.

• The rapid growth of new AI approaches in the last decade has largely overlooked the
importance of computational efficiency in algorithm design and data generation. This has
led to the widespread adoption of complex AI techniques with high computational costs
and energy consumption. This is true also in medical applications, such as AD detection,
where improvements in accuracy come at the cost of increased data availability. The
development of novel algorithms able to deal with limited resources while maximizing
the quality of the results obtained is a main objective of the emerging so-called Green AI
methods. Considering the large volumes of multimodal data nowadays available for AD,
the design and development of new energy-aware AI techniques with low computational
needs and reduced data while reaching high predictive accuracy is a desirable objective
in the near future of AD research.

Overall, integrating brain networks and multi-modal data within a learning framework holds
great potential for advancing Alzheimer’s prediction research, leading to more accurate and
reliable predictive models that can aid in early diagnosis and personalized treatment planning
for patients.



5. Conclusion

In conclusion, early detection of Alzheimer’s disease is paramount for effective intervention
and patient management. However, existing diagnostic methods often fall short, relying heavily
on clinical symptoms and biomarkers that may not provide accurate or timely results. Brain
networks offer a promising avenue for understanding the complex structural and functional
changes associated with AD. To fully grasp this complexity, a multi-modal approach is neces-
sary, incorporating various data types such as structural and functional connectivity, clinical
assessments, and genetic information.

In this paper, we advocate for the integration of brain networks and multi-modal data fusion
to advance early AD diagnosis. By combining these approaches, we can better capture the
diverse and nuanced characteristics of the disease. Our proposed framework seeks to leverage
brain network modeling and multi-modal data fusion to develop a comprehensive understanding
of AD and identify prodromal stages. This innovative approach aims to extract network features
from diverse datasets, including longitudinal data, to enhance diagnostic accuracy and inform
timely interventions for individuals at risk of AD.
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