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Abstract
Comparing incomplete database instances is crucial in various applications, including dataset evolution,
evaluating data cleaning solutions, and comparing instances from data exchange systems. We present
a framework designed to compute similarity among instances containing labeled null values, even
in the absence of primary keys. A notable outcome of our approach is the generation of a mapping
between tuples in the instances, which explains the similarity score. Computing the similarity of two
incomplete instances is NP-hard in the instance size. To compare instances of realistic size we present an
approximate PTIME algorithm that approximates the exact score with an error always smaller than 1%
but it significantly speedup the computation up to three orders of magnitude w.r.t. the exact algorithm.
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1. Introduction

Organizations use “data lakes” for storing their data in schema-on-read storage systems [1].
The reliance on data lakes is driving new techniques for organizing datasets [2, 3]. In this
setting, an important task is to compare datasets. Comparing instances could have multiple
uses. First, finding datasets that are similar to an already known dataset (e.g., find more census
data or medical records [4, 5]), even if they do not share the same key values. Second, recover
dataset version history in a data lake where new versions of datasets may be added to the
lake without identifying them as such. Finally, evaluate instances produced by different data
exchange and constraint-based data repair algorithms. Measuring how close the result of an
algorithm matches a gold standard solution requires a similarity metric for incomplete databases,
i.e., databases with labeled nulls.

However, comparison of incomplete datasets is difficult: 𝑖) in general, we cannot rely on
metadata – such as keys – to determine the correspondence between the tuples of two incomplete
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Conference I
Name Year Place Org

𝑡01 VLDB 1975 Framingham VLDB End.
𝑡02 VLDB 1976 𝑁𝑢𝑙𝑙 𝑁𝑢𝑙𝑙
𝑡03 SIGMOD 1975 San Jose ACM

(a)

Conference I1
Name Year Place Org

𝑡07 SIGMOD 1975 San Jose ACM
𝑡08 VLDB 𝑁𝑢𝑙𝑙 Framingham VLDB End.
𝑡09 𝑁𝑢𝑙𝑙 1976 Brussels IEEE
𝑡10 VLDB 𝑁𝑢𝑙𝑙 𝑁𝑢𝑙𝑙 VLDB End.

(b)
Conference I2

Name Year Place Org
𝑡15 𝑁𝑢𝑙𝑙 1975 𝑁𝑢𝑙𝑙 𝑁𝑢𝑙𝑙
𝑡16 CC&P 1980 Montreal 𝑁𝑢𝑙𝑙
𝑡17 VLDB 1976 Brussels VLDB End.
𝑡18 VLDB 1975 Framingham VLDB End.

(c)

Conference I3
Name Year Place Org

𝑡21 VLDB 1975 Framingham 𝑁1

𝑡22 VLDB 1976 Brussels 𝑁1

𝑡22 𝑁2 1975 San Jose ACM

(d)

Figure 1: Three versions of instance 𝐼 (𝑎,𝑏,𝑐) where missing values are denoted with 𝑁𝑢𝑙𝑙. In (𝑑) the
version of I obtained with data cleaning, containing labeled nulls (𝑁1).

instances (key values may be missing); and 𝑖𝑖) many datasets are inherently incomplete due to
unknown values encoded as nulls in the dataset creation or because the dataset is the result of
a data curation step. For instance, idiosyncratic encodings of incompleteness may have been
replaced with SQL-style nulls [6], a constraint-repair algorithm may have replaced conflicting
values with labeled nulls [7], or outliers may have been replaced with nulls.

Data versioning systems provide similar functionality for datasets that version control
systems, like GIT or SVN, provide for files or software. Interest in data versioning is growing
with systems like DataHub [8] and Dolt [9]. Such systems provide version management features
for datasets. However, they do not support comparing versions of incomplete datasets.

Consider the relational schema T describing database conferences: Conference(Name, Year,
Place, Org). Figure 1(𝑎) shows an initial instance (𝐼). This instance contains missing values
(denoted by 𝑁𝑢𝑙𝑙). In data versioning, nulls are common. As data evolves, not every value of a
tuple may be available. Figures 1(𝑏, 𝑐) shows two additional versions 𝐼1 and 𝐼2 of 𝐼 .

A natural question in data versioning is which instance is closer to an original dataset 𝐼 and
how different are two versions. Similarity of instances can be used to show users how instances
evolve over time by determining the order in which versions were created. Moreover, users may
be interested in obtaining a list of differences across two instances, e.g., both updated versions
of 𝐼 contain new tuples (𝑡09 and 𝑡16), two Null values in 𝐼 (𝑡02) has been updated to “VLDB End.”
(𝑡17), etc. The presence of nulls leads to uncertainty about which tuples are updated versions of
which other tuple. For example, tuple 𝑡15 can be mapped to 𝑡01 or 𝑡03; both 𝑡09 and 𝑡10 can be
mapped to 𝑡02.

Empirical Evaluation of Data Cleaning and Integration. Empirical evaluation is important
in data integration and data cleaning [10]. ST-Benchmark [11], IQ-Meter [12] and iBench [13] are
examples of frameworks for data-exchange evaluation, while BART [14] is an error-generation
tool for data repair. In data cleaning and integration systems differ not just in their runtime
efficiency but also in terms of the quality of the produced results. Thus, empirical evaluation of



such systems requires testing how similar a system-generated solution is to a known expected
solution.

Both data integration and cleaning use labeled nulls. In data exchange, labeled nulls are
used to encode incompleteness in a target instance, e.g., when there are attributes in the target
schema that do not have any correspondence to attributes from the source schema [15]. In
constraint-based data repair, labeled nulls are used by systems to mark conflicts among values
that require user intervention [16, 7, 17, 18, 19, 20, 21].

Labeled nulls encode incompleteness [22] and turn the instances we need to compare into
representation systems of incomplete databases. For example, in instance 𝐼3 in Figure 1(𝑑),
labeled nulls 𝑁1 and 𝑁3 encode the fact that the values for Name and Org are unknown for
tuple 𝑡21, but the values must be the same for attribute Org across tuples 𝑡21 and 𝑡22. When we
compare instances involving these nulls, satisfaction or violation of these constraints must be
taken into consideration.

Challenges. The two tasks above are representative examples of applications that require an
effective algorithm for comparing instances that (i) are incomplete and (ii) have no shared key,
i.e., the instances do not have keys or the keys are not consistent across the two instances. All
these settings share a common problem, which is the one of comparing incomplete instances
without keys, or instance-comparison problem [23] for short. This problem is challenging for two
reasons. First, we demonstrate that the instance comparison problem is NP-hard [23]. Second,
since similarity measurements must be repeated over time in dataset versioning, often with high
frequency, and scalability of the tools is often an evaluation parameter, a crucial requirement is
that the comparison algorithm is fast and scales to large databases [23].

Recent work for comparing instances considers an easier setting with shared keys and
without null values and, instead, focuses on solving other related problems such as exploring
and summarizing the differences between instances by identifying transformations that map
one instance into the other [24, 25].

We formalize in the next section the instance-comparison problem and present some experi-
ments to show the proposed solution’s scalability and accuracy. A detailed evaluation can be
found in the full paper [23].

2. The Instance Comparison Problem

Instances with Labeled Nulls. A relational schema R as a finite set {𝑅1, . . . , 𝑅𝑘} of relation
symbols, with each 𝑅𝑖 having a fixed arity 𝑛𝑖 ≥ 0. Consider countably infinite domains of
constants (Consts) and labeled nulls (Vars). We will use 𝑐0, 𝑐1, . . . to denote constants and
𝑁0, 𝑁1, . . . to denote labeled nulls or nulls for short.

An instance 𝐼 = (𝐼1, . . . , 𝐼𝑘) of R consists of finite relations 𝐼𝑖 ⊂ (Consts ∪ Vars)𝑛𝑖 , for
𝑖 ∈ [1, 𝑘]. We denote by Consts(𝐼) and Vars(𝐼) the set of constants and nulls in 𝐼 , respectively.
The active domain of 𝐼 is adom(𝐼) = Consts(𝐼) ∪ Vars(𝐼).

We assume the presence of unique tuple identifiers in an instance; by 𝑡id we denote the tuple
with identifier “id ” in 𝐼 .

A cell is a location in 𝐼 specified by a tuple id/attribute pair 𝑡id.𝐴𝑖. We denote by ids(𝐼) the
set of tuple ids of instance 𝐼 . When comparing two instances 𝐼 and 𝐼 ′, we will assume that



Id Name Year Org

t1 N1 VLDB 1975 VLDB	End.

t2 N2 VLDB N4 VLDB End.

t3 N3 SIGMOD 1977 ACM

I Id Name Year Org

t4 Va VLDB 1975 VLDB	End.

t5 Va VLDB 1976 Vb

t6 3 ICDE 1984 IEEE

I’

Id Name Year Org

t1 Va VLDB 1975 VLDB	End.

t2 Va VLDB 1976 VLDB End.

t3 Nb SIGMOD 1976 ACM

Id Name Year Org

t4 Va VLDB 1975 VLDB	End.

t5 Va VLDB 1976 VLDB End.

t6 3 ICDE 1984 IEEE
N1 à Va
N2 à Va
N4 à 1976

Vb à
VLDB End.

tuple mapping: 
(t1, t4)
(t2, t5)

hL:

left-to-right 
value mapping

hR:

right-to-left
value mapping

h(Conferencee) h’(Conferenceg)

Figure 2: A Sample Instance Match.

ids(𝐼) ∩ ids(𝐼 ′) = ∅.
A mapping ℎ : adom(𝐼) → adom(𝐼 ′) such that ∀𝑐 ∈ Consts : ℎ(𝑐) = 𝑐 is called a

homomorphism if, ∀𝑡 ∈ 𝐼 : ℎ(𝑡) ∈ 𝐼 ′. Two instances are isomorphic, i.e., they represent
the same information, if there exists a bijective homomorphism between 𝐼 and 𝐼 ′.

Figure 1(𝑑) shows an instance 𝐼3 that contains constants from Consts (for example, “1975”
or “San Jose”) and contains nulls from Vars (𝑁1, 𝑁2). This might be the result of repairing an
instance of the database that is dirty wrt. the functional dependency (FD): Conference : Name →
Org. Assume the FD identifies two tuples with conflicting values for the Org attribute – say,
“VLDB” and “VLDB End.”. In this case, the repair algorithm uses a labeled null (𝑁1) to mark the
conflict so that a human expert solves it using domain knowledge [26]. The same applies in
data-exchange where the instance might be the result of mapping a source database into the
target schema T. Some of the mappings leave unspecified values of some attributes introducing
labeled nulls as placeholders for human experts.

The Instance-Comparison Problem. The instance-comparison problem takes as input two
instances 𝐼 and 𝐼 ′ and outputs the similarity of the two instances, i.e. a value between 0 and 1,
where 0 indicates a total dissimilarity and 1 indicates a total similarity. Intuitively, to compare
two instances we need: 1) a way to map tuples from 𝐼 and 𝐼 ′ (and vice-versa), i.e. we need to
find tuples in 𝐼 that match to tuples 𝐼 ′. We call this step instance match; and 2) we need to
compute a score that takes into account tuples that match but also tuples that do not match.

Fig. 2 shows two instances. We can map tuple 𝑡1 to 𝑡4 and 𝑡2 to 𝑡5 by mapping nulls 𝑁1 → 𝑉𝑎,
𝑁2 → 𝑉𝑎, and 𝑁4 → 1976 for 𝐼 and 𝑉𝑏 → VLDB End. for 𝐼 ′. Note that this is the best mapping
we could apply. If we map 𝑁4 → 1975 and 𝑁1, 𝑁2 → 𝑉𝑎 then we can map 𝑡2 to 𝑡4 but we
miss to map 𝑡1 and 𝑡5. Among, all the possible mappings, we are interested in finding the best
mappings, i.e. the ones that maximize the matches and thus the similarity.

The similarity similarity(𝐼, 𝐼 ′) of 𝐼 and 𝐼 ′ is defined as: similarity(𝐼, 𝐼 ′) = maxM∈ℳ(score(M )),
where score(M ) takes into account the best mappings. The instance-comparison problem takes
as input instances 𝐼 and 𝐼 ′ and outputs similarity(𝐼, 𝐼 ′).

Instance Match. To match tuples from two instances 𝐼 and 𝐼 ′ we first should define how
to match cells among the tuples. A value mapping ℎ for 𝐼 is a total function adom(𝐼) →
Vars ∪ Consts such that ℎ(𝑐) = 𝑐 for each 𝑐 ∈ Consts(𝐼), i.e., is a mapping that preserves



constants. We use ℎ(𝑡) to denote the application of value mapping ℎ to the attribute values of a
tuple 𝑡 and ℎ(𝐼) to denote the application of ℎ to all tuples in 𝐼 . We do not allow a constant
to be mapped to a different constant. For instance, 𝑡16 in Fig. 1 is not mapped to any tuple in
instance 𝐼 .

Given two instances 𝐼 and 𝐼 ′ for the same schema 𝑅, a tuple mappings m is a subset of
𝐼 × 𝐼 ′. This design choice permits to consider not only functional, total mappings – like
homomorphisms – but also non-functional mappings [23]. It is clear, that given 𝐼 and 𝐼 ′ there
could be multiple tuple mappings, i.e. multiple combinations to match tuples from 𝐼 to tuples in
𝐼 ′. Consider Fig. 2, depending on the tuple mappings configuration (functional, non-functional),
tuple 𝑡2 in 𝐼 could be mapped only to 𝑡4, or only to 𝑡5, or could be mapped to both 𝑡4 and 𝑡5 in
𝐼 ′ (in total three possible tuple mappings for 𝑡2).

Let 𝐼 and 𝐼 ′ be two instances over schema 𝑅. An instance match is a triple M = (ℎ𝑙, ℎ𝑟,m)
where ℎ𝑙 is a value mapping for 𝐼 , ℎ𝑟 is a value mapping for 𝐼 ′, and m is a tuple mapping for 𝐼
and 𝐼 ′. An instance match M is a complete match iff ∀(𝑡1, 𝑡2) ∈ 𝑚 : ℎ𝑙(𝑡1) = ℎ𝑟(𝑡2). We use
ℳ to denote the set of all complete instance matches for 𝐼 and 𝐼 ′ since it is clear that there
could be multiple instance matches depending on the tuple mapping configuration.

Match Score. Given an instance match M = (ℎ𝑙, ℎ𝑟,𝑚), we will define the similarity measure
by assigning scores to each tuple based on what tuples in the other instance it is matched with
by the tuple matching 𝑚. We first define how to score cells among tuples in match, then we
define how to score the two instances.

As a null represents a different value in each ground instance represented by an instance
with nulls, intuitively, mapping a null to a constant should get a score less than 1 (the score for
matched constants). Furthermore, we should measure the degree of non-injectivity for value
mappings for a null in 𝐼 (𝐼 ′) and penalize scores for cells which contain nulls with larger degrees
of non-injectivity. This ensures that for isomorphic instances where ℎ𝑙 and ℎ𝑟 will be injective
on nulls, there is no penalty, and for non-isomorphic instances either some tuples do not match
or both value mappings are not injective on all nulls. Towards this goal, we define a function
⊓ for a value 𝑣 in 𝐼, 𝐼 ′, that measures that level of “non-injectivity” of the value mappings
ℎ𝑙, ℎ𝑟 for 𝑣. We distinguish the case of a constant from the one of a null. For constants, ⊓ is
always equal to 1 – this captures the fact that constants can only be mapped to themselves and
therefore cannot be the source of non-injectivity. This is due to the mapping of nulls, for which
we distinguish the case of 𝑣 ∈ Vars(𝐼), and 𝑣 ∈ Vars(𝐼 ′) as shown in Eq.1. Then, the score
for the same attribute 𝐴 of two tuples 𝑡 ∈ 𝐼 and 𝑡′ ∈ 𝐼 ′ that are in match is defined as shown
in Eq. 2, where we assume a parameter 0 ≤ 𝜆 < 1, which defines the penalty for mapping a
variable to a constant, given as input. Now the score of the two tuples 𝑡 ∈ 𝐼 and 𝑡′ ∈ 𝐼 ′ in
matches is the sum of the scores of each attribute (Eq. 3).

As a tuple matching m may not be injective, we have to decide how to calculate a score
for a tuple based on the tuples it is matched to by 𝑚 (score(M , 𝑡)). For that, we define the
image of a tuple according to a tuple mapping m . For a tuple 𝑡 ∈ 𝐼 we define the image of 𝑡 as
𝑚(𝑡) = {𝑡𝑚 | (𝑡, 𝑡𝑚) ∈ m}, and for 𝑡′ ∈ 𝐼 ′ the image of 𝑡′ as 𝑚(𝑡′) = {𝑡𝑚 | (𝑡𝑚, 𝑡′) ∈ m}. We
then calculate the score of a tuple 𝑡 as the average score for the pairs (𝑡, 𝑡′) for every tuple 𝑡′ in
the image of 𝑡. (Eq. 4). Each tuple 𝑡 will be assigned a score between [0, 𝑛] where 𝑛 is the arity
of 𝑡. To achieve a similarity score in [0, 1] we will normalize the sum of the tuple scores by the



number of cells in the instance,i.e. size(𝐼) (Eq. 5).

⊓(𝑣) =

⎧⎪⎨⎪⎩
1 if 𝑣 ∈ Consts

|{𝑣′|ℎ𝑙(𝑣′) = ℎ𝑙(𝑣)}| if 𝑣 ∈ Vars(𝐼)

|{𝑣′|ℎ𝑟(𝑣′) = ℎ𝑟(𝑣)}| if 𝑣 ∈ Vars(𝐼 ′)

(1)

score(M , 𝑡, 𝑡′, 𝐴) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if ℎ𝑙(𝑡.𝐴) ̸= ℎ𝑟(𝑡

′.𝐴)

1 if 𝑡.𝐴, 𝑡′.𝐴 ∈ Consts ∧ 𝑡.𝐴 = 𝑡′.𝐴
2

⊓(𝑡.𝐴,𝑡′.𝐴) if 𝑡.𝐴, 𝑡′.𝐴 ∈ Vars ∧ ℎ𝑙(𝑡.𝐴) = ℎ𝑟(𝑡
′.𝐴)

2×𝜆
⊓(𝑡.𝐴,𝑡′.𝐴) otherwise, with ℎ𝑙(𝑡.𝐴) = ℎ𝑟(𝑡

′.𝐴)

(2)

score(M , 𝑡, 𝑡′) =
∑︁
𝐴∈𝑅

score(M , 𝑡, 𝑡′, 𝐴) (3)

score(M , 𝑡) =

∑︀
𝑡𝑚∈𝑚(𝑡) score(M , 𝑡, 𝑡𝑚)

size(𝑚(𝑡))
(4)

score(M ) =

∑︀
𝑡∈𝐼 score(M , 𝑡) +

∑︀
𝑡′∈𝐼′ score(M , 𝑡′)

size(𝐼) + size(𝐼 ′)
(5)

Exact and Signature Algorithm. To calculate the similarity(𝐼, 𝐼 ′) of two instances 𝐼 and 𝐼 ′

we need to discover ℳ (the set of all complete instance matches for 𝐼 and 𝐼 ′) and for each tuple
mappings 𝑚 ∈ ℳ we need to compute the score and return the 𝑚 that has the highest score.

The exact-algorithm works in two steps. First, it builds a set of candidate tuple pairs by looking
for compatible tuples. We say that (𝑡, 𝑡′) from 𝐼 , 𝐼 ′ are compatible if it is possible to construct
value mappings ℎ𝑙, ℎ𝑟 such that ℎ𝑙(𝑡) = ℎ𝑟(𝑡

′). Then, we combine these candidate tuple pairs
in all possible ways to construct candidate instance matches, compute their scores, and return
the instance match with the highest score.

The Signature Algorithm is a scalable approximate algorithm, that we show empirically to
often obtain optimal or near optimal results for real use cases.

The intuition is that finding mappings between tuples sharing the same constant values is
easier than finding mappings between tuples that have no conflicting constant values. To do
that, we introduce the concept of a signature of a tuple 𝑡, as a positional encoding of some of
the constants in the tuple. Consider for example tuple 𝑡5 in Fig. 2: 𝑡5 : ⟨𝑉𝑏,VLDB, 1976, 𝑉𝑐⟩.
One signature of 𝑡5 is: [Name: VLDB, Year: 1975]. We use a greedy algorithm: as soon as it
finds a compatible mapping of two tuples based on their signatures, it uses it to construct the
instance match. The intuition is to start with very promising matches, i.e., tuples that share
most constant values, and then move to less promising ones.

Given a tuple 𝑡 over schema 𝑅, we associate with it a number of signatures, i.e. all the possible
signatures that could be generated for 𝑡. Our search for compatible tuples relies on signatures.
We construct all maximal signatures (i.e. the ones with the highest number of constants) for
tuples in one of the instances – say 𝐼 – and store them in an appropriate hash-based data
structure, called a signature map. Then, we scan the tuples of the other instance – 𝐼 ′ in our
example – and for each of them consider all of its signatures to find possibly-matching tuples
on the other side. In doing this, we greedily construct our instance match. This allow us to find



Table 1
Score results for Exact (Ex) and Signature (Sig).For each dataset, #T, #C, #V are the # of tuples, constants,
nulls. * indicates score by construction.

Source Target Ex Sig Sig Ex
Data #T #C #V #T #C #V Score Score Diff T (s) T (s)

Doct .6k 2.7k 700 .6k 2.7k 670 .724 .721 .003 .1 15.6
Doct 1.1k 5.5k 1.3k 1.1k 5.5k 1.3k .722 .720 .002 .2 55.3
Doct 5.6k 27.6k 6k 5.6k 28k 5k .754* .751 .003 2.3 -
Doct 11k 55k 12k 11k 55k 11k .763* .761 .002 7.0 -
Doct 110k 544k 120k 110k 556k 108k .776* .771 .005 18.8 -

Bike .6k 5.6k .3k .6k 5.6k .2k .535 .535 .000 .5 147.5
Bike 1.1k 11k .5k 1.1k 11k .5k .543 .543 .000 1.4 688.3
Bike 5.8k 56k 2k 5.7k 55k 2k .549* .549 .000 20.1 -
Bike 11k 111k 4k 11k 111k 4k .544* .543 .001 45.0 -
Bike 115k 1.12M 34k 115k 1.11M 46k .543* .54 .003 279 -

Git .6k 11k .7k .6k 11k .8k .290 .290 .000 3.4 1870
Git 1.2k 22k 1.4k 1.2k 22k 1.4k .317 .316 .001 8.8 8552
Git 6k 113k 6.2k 6k 111k 6.4k .294* .293 .001 211.0 -
Git 12k 225k 12k 12k 223k 12k .298* .295 .002 498.5 -
Git 117k 2.2M 97k 116k 2.2M 107k .297* .297 .000 42k -

candidate tuples 𝑡′ ∈ 𝐼 ′ that have at least as many constants. To identify candidates with less
constants, we need to reverse the direction of the check, so we execute the same step starting
from 𝐼 ′ and scanning tuples in 𝐼 .

We have derived an instance match M that contains signature-based matches, but these
do not cover all possible tuple matches. Consider tuples 𝑡2 = ⟨𝑁2,VLDB, 𝑁4,VLDB End.⟩ and
𝑡5 = ⟨𝑉𝑏,VLDB, 1976, 𝑉𝑐⟩ in Fig. 2. Despite the two tuples are compatible (they are matched in
Fig. 2), they have no signature-based match. This is due to the different positions of the nulls,
that prevent from using maximal signatures to identify the match. Therefore, we complete
the process by adding non-signature-based matches. This step relies on the same idea of the
exact-algorithm in discovering compatible tuples. However, instead of trying all powersets, we
adopt a greedy approach: as soon as an extension of M exists for two compatible tuples, 𝑡 and 𝑡′,
the match is confirmed. Since signature-based matches are typically a majority of the matches
to identify, the number of tuples in the final step of the algorithm is lower than the original size
of 𝐼 . The pseudocode of both algorithms is presented in the full paper [23].

3. Experimental Results and Conclusions

We evaluate our approach around two questions: 1) what is the signature quality vs. the
exact algorithm? i.e., what is the difference in terms of the computed similarity scores?; 2) can
the signature algorithm scale up to higher instances? i.e., can we run the signature algorithm
on instances with thousands of tuples?

Using the Exact algorithm, we obtain the similarity score of the two instances. We then
compare such a score with the one obtained by using our Signature algorithm. This comparison,
however, is feasible only for very small instances due to the computational complexity of the
Exact algorithm. For settings with bigger instances, we rely on a gold mapping between the two
instances in the comparison obtained programmatically by introducing changes (constants to



Table 2
We report the % of the matches discovered in the Signature-Based search step (SB); the % discovered in
Exact search step (Ex); the score using only Sig.-Based step (SB); and the overall Score (Final Score).

% Matches % Matches Score Score
Dataset SB Ex SB Final

Doct 1k 98.69 1.31 .712 .720
Bike 1k 99.85 0.15 .542 .543
Git 1k 99.74 0.26 .315 .316

nulls, nulls to constants, contants to different constants, nulls to different nulls) in the instances
a keep track of the changes. (see the full paper for more details [23]). Notice that the gold
mapping could be used to compute the exact score of the two instances. We use three datasets:
Doctors (Doct) is a synthetic dataset with constants and nulls [27]; Bikeshare (Bike) [28] and
GitHub (Git) [29] are real datasets with constants. For each original dataset we generate different
scenarios of different sizes and changes.

Table 1 reports the statistics about the source and target instances in terms of the number
of tuples (#T), constants (#C), and nulls (#V). We use different tuple sizes for each dataset. We
measure the score of Exact (Ex) and Signature (Sig), and the execution time in seconds. When
Ex exceeds a timeout of 8 hours, we use the score computed by constructing the instances. The
highest score difference for Sig algorithm is 0.005. In five cases the difference is zero. In terms of
execution time, the Sig. algorithms is faster up to three orders of magnitude wrt Ex. algorithm.

Results confirm that Ex can be used only on small instances, while Sig scales up to thousands
of tuples with a low error in the computed score. Results on Git shows that Sig is affected by
the increasing size of the attributes, e.g., we observe two order of magnitude difference between
Doct (5 attributes) and Git (19 attributes) on the same instance sizes, and also the number of
attributes containing nulls affect it.

Table 2 reports the % of tuple mapping discovered in the two steps of Sig. Almost all
the matches are discovered in the first step, i.e., Signature-Based Matches, and only a small
percentage in the second, exhaustive step. This explains why Sig is much faster than Ex: most
of the mappings are discovered in the first step, drastically reducing the number of tuples in the
expensive check.

An extensive evaluation of our framework can be found in the full paper [23].

Conclusions. We presented the problem of comparing incomplete instances in the absence of
shared keys. In addition to an exact algorithm, we presented an efficient approximate instance
comparison algorithm based on signatures. We demonstrated in our experimental evaluation, the
approximate algorithm can compute the similarity of large instances and closely approximates
the similarity computed using the exact algorithm. Our framework provides a flexible, efficient,
and comprehensive addition to the existing data versioning ecosystem, with its capacity to
calculate similarity scores and mappings between incomplete instances.
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